
J. Fluid Mech. (2001), vol. 436, pp. 231–248. Printed in the United Kingdom

c© 2001 Cambridge University Press

231

Longitudinal and transverse structure functions
in a turbulent round jet: effect of initial

conditions and Reynolds number

By G. P. R O M A N O1 AND R. A. A N T O N I A2

1Department of Mechanics and Aeronautics, ‘La Sapienza’ University, 00184 Rome, Italy
2Department of Mechanical Engineering, University of Newcastle, NSW, 2308, Australia

(Received 28 February 2000 and in revised form 25 September 2000)

The difference between scaling exponents of longitudinal and transverse velocity
structure functions in the far-field of a round jet is found to depend on the anisotropy
of the flow. The effect of the large-scale anisotropy is assessed by considering different
initial conditions at the jet nozzle, and hence different ratios of the longitudinal to
transverse rms velocities. The effect of the Taylor microscale Reynolds number on
the small scale anisotropy is also considered. Both effects account, to a large extent,
for the observed difference between longitudinal and transverse exponents and the
disagreement between previously published results of different authors. This disagree-
ment also depends on the method used to determine the inertial range. An empirical
description of the overall behaviour of the structure functions provides reasonable
estimates for the longitudinal and transverse exponents, accounting reasonably well
for the anisotropy of both large- and small-scale motions.

1. Introduction
It is well established that moments of the increment between velocity fluctuations

at two points (or velocity structure functions (SF)) in a high-Reynolds-number
turbulent flow scale as a power of the separation between the points, e.g. Frisch
(1995). According to the local similarity hypothesis of Kolmogorov (1941, herein-
after K41), the scaling exponent increases linearly with the moment of the SF. In
reality, the increase is nonlinear owing to fluctuations of the energy dissipation rate,
a phenomenon usually referred to as small-scale intermittency. Departures from K41
have been extensively reported especially for longitudinal structure functions (LSF),
that is for the statistics of the differences of velocity fluctuation components along
the direction of separation (e.g. Sreenivasan & Antonia 1997). The departure is
reasonably well described by a nonlinear behaviour, the details of which depend on
the intermittency model that is used, e.g. Frisch (1995). Less attention has been given
to transverse structure functions (TSF) or differences of velocity components along
directions orthogonal to the separation. Especially for anisotropic flows, a complete
investigation of intermittency effects must include information with respect to both
longitudinal and transverse directions. For locally isotropic incompressible turbulence,
the second-order LSF and TSF are related by (e.g. Monin & Yaglom 1975)

〈(δu∗T )
2〉 =

(
1 + 1

2
r∗

∂

∂r∗

)
〈(δu∗L)

2〉, (1)
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where δα ≡ α(x+ r)− α(x) and α stands for either uL, the velocity fluctuation in the
same direction as r, or uT , the velocity fluctuation normal to that of r. The asterisks
in (1) denote normalization by the Kolmogorov lengthscale η (≡ (ν3/〈ε〉)1/4 where 〈ε〉
is the mean turbulent energy dissipation rate) and/or the Kolmogorov velocity scale
uK [≡ (ν〈ε〉)1/4]. In the inertial range (IR) (η � r � L, where L is the integral length
scale),

〈(δα∗)p〉 ∼ Cα(p) r∗ζαp ,
where Cα(p) may, in general, depend on the flow macrostructure (K41). The use of
(1) implies that the scaling exponents are related by

ζT2 = ζL2 + logr∗

[
CL(2)

CT (2)
(1 + 1

2
ζL2 )

]
. (2)

(the argument of the logarithm to base r∗ is usually assumed to be equal to 1 and
the equality between ζT2 and ζL2 follows). When the same velocity fluctuation, for
example u, is used to form both LSF and TSF, we may expect the difference between
ζL and ζT to be small, especially when the separation is along a homogeneous flow
direction (Noullez et al. 1997; van de Water & Herweijer 1999; Zhou, Pearson &
Antonia 2000). In the latter case, 〈(δuL)2〉 = 〈(δuT )2〉 when r is sufficiently large for
the velocity fluctuation at the two points to become decorrelated. Results comparable
to (1) and (2) have yet to be rigorously established for p = 4.

Equations (1) and (2) can be used to assess which scales conform with isotropy
and allow isotropic values of the transverse exponents to be estimated from measured
longitudinal exponents. These isotropic values can be compared with the measured
transverse exponents. If we assume that ζLp = 1

3
p, as in K41, but allow for the

possibility, contrary to K41, that ζLp may differ from ζTp , the equality

ζL2 = ζT2 (3)

follows from (2). Deviations from (3) owing to intermittency corrections are small
(less than 1%) and the argument of the logarithm remains close to 1. Indeed, a
larger difference should exist between ζT2 and ζL2 if the argument differs significantly
from 1, i.e. if the ratio CT (2)/CL(2) differs from 4/3. Atmospheric surface layer data
(Antonia & Pearson 1999) suggest that the value of 4/3 may indeed be approached
when Rλ ' 104. An extrapolation of (3) to p 6= 4 may lead to the conclusion that the
absolute magnitudes of the LSF and TSF scaling exponents are equal. This result
is not supported by the majority of the available experimental and numerical data.
In particular, there is only moderate support for (3) (Noullez et al. 1997), whereas
there is significant evidence to suggest that ζTp is smaller than ζLp (Boratav & Pelz
1997; Camussi, Barbagallo & Guj 1997; van de Water & Herweijer 1999; Zhou &
Antonia 2000). The difference is typically about 20% for p = 4 and 40% for p = 8.
The reasons for this inequality clearly require further investigation, especially in the
context of improving small-scale turbulence modelling. Possible explanations, not
necessarily unrelated, for this inequality are listed below:

(i) the anisotropy of the flow;
(ii) the effect of Reynolds number;
(iii) the effect of initial and boundary conditions;
(iv) the intermittencies affecting LSF and TSF (which may be inherently different).
Possibility (i) seems to be a natural source for the observed differences. Equation

(1) can help to quantify this effect. While this is the approach adopted here, other
interesting approaches have been considered in the literature. For example, con-
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ditioning on the large-scale velocity fluctuation was used by Sreenivasan & Dhruva
(1998) to account for the effect of the mean shear on the anisotropy of the IR. More
recently, the isotropic part of the measured structure functions was extracted (Kurien
& Sreenivasan 2000) by projecting these functions onto the isotropic sector of the
so-called SO(3) decomposition (e.g. L’vov & Procaccia 1996). Regarding (ii), there is
a tendency for the IR to contract and eventually disappear as the Reynolds number
is reduced. This may affect TSF more than LSF, leading to a biased evaluation of the
scaling exponents. Pearson & Antonia (1999, 2001) found that the magnitude of the
difference ζLp − ζTp decreases as Rλ (the Taylor microscale Reynolds number = u′λ/ν;
u is the longitudinal velocity fluctuation, λ is the longitudinal Taylor microscale and a
prime denotes the r.m.s. value) increases, although it does not completely vanish even
at Rλ ' 10 000, see also Dhruva, Tsuji & Sreenivasan (1997). Although George (1989)
has questioned the universality of similarity solutions in jet flows when different initial
conditions are involved, (iii) has yet to be investigated systematically; this effect may
result in different injections of energy at the large scales which could, in turn, affect the
IR. Such a scenario could explain why there is generally qualitative agreement with
the inequality ζTp < ζLp as well as significant disagreement with regard to its magnitude.
Possibility (iv) has been considered by some authors, in particular through possible
differences in the scaling of the locally averaged energy dissipation rate and of the
enstrophy. It has been suggested, on the basis of DNS data (e.g. Chen et al. 1997;
Boratav & Pelz 1997) that δuL is principally influenced by the former, whereas
δuT depends mainly on the latter. Using grid turbulence measurements (Rλ < 100),
Antonia, Zhou & Zhu (1998; also Zhou & Antonia 2000) inferred the LSF and TSF
exponents from those of the energy dissipation rate and enstrophy, respectively. The
resulting differences, 2% for p = 4 and 6% for p = 8, were much smaller than the
measured differences. Paret & Tabeling (1998) have noted that incompressibility could
also cause LSF and TSF exponents to be different, owing to different forms of the
longitudinal and transverse correlations.

The main aim of the paper is to investigate the difference between scaling exponents
of LSF and TSF in the context of a round jet, for which the anisotropy associated
with the large-scale motion is likely to be more important than in grid turbulence.
The attention is focused on the effect of both large- and small-scale anisotropies, the
former through the velocity fluctuations and the latter through the Reynolds number.
Different velocity fluctuations are considered by comparing results in two jets with
different initial conditions, one using water and the other air, at the same x/d location
and nominally the same Rλ (' 500). At this location, the large-scale anisotropy is
different in each flow, reflecting differences in the way the two facilities are designed
and constructed. Measurements are also made at the same x/d, but over a significant
Rλ range in each of the two jets.

2. Experimental facilities
2.1. Air jet

The air jet facility consists of an open circuit wind tunnel. Air is supplied by a
variable speed centrifugal blower through a diffuser, a settling chamber and a (1 : 85
in area) contraction with an exit diameter d equal to 55 mm. An air filter at the inlet
to the blower minimizes the contamination of the flow by dust particles. The blower
is coupled to a three-phase 415 V, 50 Hz a.c. motor controlled by a variable-frequency
electric converter driver. A flexible rubber section was installed between the blower–
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motor assembly and the settling chamber in order to reduce any transmission of
vibration generated by the assembly. A series of screens and a honeycomb section,
constructed from drinking straws, were inserted in the settling chamber to reduce the
turbulence level and straighten the flow. The jet exhausts into the ambient air of a
relatively large laboratory. A cross-wire probe was mounted on a two-dimensional
traversing mechanism. The hot wires were etched from Pt–10% Rh to a diameter
of 2.5 µm and an active length of about 0.5 mm (about 3.3 Kolmogorov microscales
at the measurement station). In-house constant temperature anemometers were used
to operate the wires at an overheat ratio of 1.5. The wires were calibrated for
velocity and yaw at the nozzle end plane using a Pitot tube connected to a Furness
micromanometer. The anemometer signals were digitized at a sampling frequency fs
using a 12-bit analogue–digital board into a PC.

2.2. Water jet

In the closed circuit facility, a centrifugal pump moves water from a primary tank into
a settling chamber which is equipped with a valve to dampen oscillations due to the
pump. Screens and honeycombs are placed at the end of the chamber before the first
contraction (1 : 15 in area) which leads to a rectangular section. A second contraction
(1 : 3 in area) provides the transition to a 1.5 m long pipe, with an inner diameter of
14 cm. It is followed by a third contraction. (1 : 50 in area). This severe contraction
was designed to suppress the growth of Görtler vortices; it consists of adjacent
truncated conical sections joined by smoothed corners. The jet (diameter d = 20 mm)
exits into a large water-filled tank (height 30d, width 30d, length 60d) from which the
water returns to the primary tank. The pipe, contraction and large tank are made
of Perspex to allow unimpeded optical access to the flow. At the jet exit, the flow is
axisymmetric and has no swirl; preliminary measurements also confirmed that it is
unaffected by any external forcing due to the pump. Two-component forward-scatter
mode Laser-Doppler anemometer (LDA) measurements were made using a He–Ne
laser system equipped with two Bragg cells. The fringe spacing was 3.416 µm and
the measurement volume size is about 0.1 mm, 0.1 mm and 0.8 mm along the x-, y-
and z-axes, respectively. The LDA data are resampled using a linear interpolation
to obtain equispaced samples which also provide unbiased statistics. The value of
Rλ is sufficiently large to expect the LDA noise not to affect the behaviour of
structure functions in the IR (Antonia et al. 1997b). The noise contribution to LDA
measurements is evaluated using the well-known theoretical results in the dissipative
range (DR) (Romano, Antonia & Zhou 1999). The influence of this noise is estimated
to be restricted to the region r∗ < 50 (it is investigated in more detail in § 4).

3. Experimental conditions
In each jet, measurements were made at x/d ' 40 (x is measured from the nozzle

exit plane), where the flow field may be considered to be approximately self-preserving.
The jet exit velocity Uj was selected so that Rλ was nominally the same (' 495 and
500 in the air and water jets, respectively) at the measurement location. To achieve
this, the exit Reynolds number Rj ≡ Ujd/ν was 1.7× 105 for the air jet and 4.9× 104

in the water jet. The different values of Rj reflect a difference in the initial conditions
and characteristic development of the two flows. Antonia, Satyapra Kash & Hussain
(1980) proposed empirical expressions relating Rλ in the self-preserving region of plane

and circular jets to Rj . Typically, the relations are of the form Rλ = kR
1/2
j , where the

constant k embodies several effects of the local turbulence intensity u′/U0 (U0 is the
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Air Water

Rλ 495 500
u′/U0 0.26 0.29
v′/U0 0.22 0.22
u′/v′ 1.18 1.32

〈ε〉Lu/u′3 0.76 0.35

k ≡ Rλ/R1/2
j 1.2 2.3

k1 ≡ (U0/Uj)(x/d) 6.64 6.70
k2 ≡ L0/x 0.104 0.086
η (mm) 0.105 0.10
uK (m s−1) 0.099 0.011
Lu (m) 0.166 0.055
Lv (m) 0.071 0.025

Independent samples 15 000 8000

Table 1. Characteristic parameters for the two jets at x/d = 40.

local mean velocity, also on the axis; the external ‘free stream’ velocity is negligibly
small in each jet), the dimensionless mean energy dissipation rate 〈ε〉L0/U

3
0 (L0 is the

half-radius) as well as of factors such as dL0/dx and dU0/dx, which characterize the
streamwise development of the jet. These parameters, together with the ratio v′/U0

(v′ is the radial r.m.s. velocity on the axis) and the integral lengthscales Lu and Lv ,
associated with components (u and v) are shown in table 1. Lu and Lv are inferred,
using the Taylor hypothesis from integrations up to the first zero-crossing point of
the u and v autocorrelations. For example, Lu = 〈U〉 ∫ τ0

0
ρuu(τ) dτ where ρuu(τ) is the

temporal longitudinal autocorrelation function and τ0 is the time corresponding to
the first zero crossing of ρuu(τ).

The table indicates important differences between the two jets. These differences are
reflected in the significantly different values of k and 〈ε〉L/u′3. 〈ε〉 was estimated with
the use of the isotropic relation 〈ε〉 = 15ν〈(∂u/∂x)2〉 whereas 〈(∂u/∂x)2〉 was inferred
from the integral

∫ ∞
0
k2

1φu(k1) dk1, where k1 is the one-dimensional wavenumber and
φu(k1) is the spectral density of u (

∫ ∞
0
φu(k1) dk1 = 〈u2〉) after the high-wavenumber

noise contamination was removed (Pearson 1999). The difference in u′/v′ (1.18 for the
air jet and 1.32 for the water jet) is a measure of the different contributions from the
large scales between the two jets. At the air jet nozzle exit, the velocity has a top-hat
distribution. The boundary layer is laminar with a velocity profile in close, but not
perfect, agreement with the Blasius solution; the boundary-layer shape parameter H
is 2.63, compared to 2.59 for Blasius. The ratio u′/Uj is about 0.015 on the jet axis.
The water jet also has a top-hat velocity profile at the nozzle exit. The boundary-layer
shape parameter is equal to 3.29 and u′/Uj is about 0.021 on the jet axis.

The number of collected samples is about 106 in each jet. However, the number of
independent samples, given by 〈U〉TS/2Lu (where TS is the total record duration), is
about 104 (the precise values are given in table 1).

4. Structure functions
The Taylor hypothesis has been used to convert the temporal SF to a spatial SF.

The LSF is obtained from temporal differences of u, whereas the TSF is inferred from
temporal differences of v. Second-order LSF and TSF are shown in figure 1 for the
air jet. Also included in the figure is the second-order TSF calculated using equation
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Figure 1. Measured second-order LSF and TSF for the air jet. The second-order TSF is also
obtained from equation (1). Theoretical slopes in dissipative and inertial ranges are shown.
—–, measured LSF; - - -, measured TSF; – –, TSF obtained with (1).

(1). The LSF distribution approaches the isotropic limit r∗2/15 at small r∗. This is
expected since 〈ε〉 = 15ν〈(∂u/∂x)2〉 was used to determine 〈ε〉. The slope of the LSF
is close to K41 (p = 2/3) over the IR, which extends from r∗ ' 50 to r∗ ' 200 (the
identification of the IR is discussed in § 5). The TSF distribution approaches a limit
which is somewhat smaller than 2r∗2/15 at small r∗, reflecting a small departure from
local isotropy. The ratio 〈(∂v/∂x)2〉/〈(∂u/∂x)2〉 is 1.9 instead of 2 (isotropy). Over
the IR, the slope indicated by the TSF distribution is noticeably smaller than that
predicted by K41. The TSF distribution calculated using (1) follows the measured
distribution reasonably well over the DR and the first part of the IR; the divergence
between calculated and measured distributions is not surprising since, in the limit
r∗ → ∞, equation (1) requires that 〈(δv)2〉 = 〈(δu)2〉, i.e. 〈v2〉 = 〈u2〉, whereas, in reality,
the large-scale anisotropy enforces the inequality 〈v2〉 < 〈u2〉. The u′ and v′ values in
table 1 indicate that 〈v2〉/〈u2〉 ' 0.72 for the air jet. This large-scale anisotropy is, not
surprisingly, larger than that indicated by the ratio 〈(∂v/∂x)2〉/〈(∂u/∂x)2〉.

LSF and TSF distributions in the water jet are shown in figure 2. Overall, there
is similarity between these distributions and those for the air jet, but the small-scale
behaviour (r∗ < 10) is now masked by a larger noise contribution. It is clear, however,
that there is a greater difference, relative to the air jet, between LSF and TSF as
the separation becomes comparable to the integral lengthscale. The different limiting
values of LSF and TSF for the two jets, when r∗ → ∞, represent a measure of the
difference in anisotropy between these flows. As for the air jet, the slope of the LSF
is close to K41 over the IR, whereas the slope of the TSF is discernibly smaller. The
TSF derived from (1) approaches the LSF when r∗ is comparable to L∗u (or L∗v ); in
(1), when r∗ → ∞, the second term on the right-hand side vanishes which makes the
TSF then equal to the LSF. The calculated TSF approaches the measured TSF in
the IR. This behaviour clearly indicates that the large part of the difference between
LSF and TSF is due to the large-scale anisotropy, which is nearly eliminated when
using (1). The effect of the small- and large-scale anisotropy on LSF and TSF will be
considered in more detail in §§ 6 and 7.

The distributions of d(log〈(δu∗)p〉)/d(log r∗) are shown in figure 3 for p = 2 and
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Figure 2. Measured second-order LSF and TSF for the water jet. The second-order TSF is
also obtained from equation (1). The theoretical slope in the IR is shown. —–, measured LSF;
- - -, measured TSF; – –, TSF obtained with (1).
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Figure 3. Derivative of second-order (below) and fourth-order (above) LSF for the two jets. The
amplitude of the IR is bounded by vertical lines. The horizontal lines correspond to the K41 values.
—–, water jet; - - -, air jet.

p = 4. This presentation allows a more critical appraisal of the IR behaviour of the
SFs since plateaux should appear over the IR if the latter is identified with power-
laws. Figure 3 shows that there are no plateaux so that the exponents ζL2 and ζL4
cannot be determined without ambiguity. This result does not contradict either K41
or K62 which were proposed for very large Reynolds numbers; indeed, even when
Rλ is of order 104, unique values of ζL2 (and ζT2 ) still cannot be identified. Arguably,
although the IR may not strictly exist at the present Rλ, figure 3 indicates that there is
a range where the variation with respect to r∗ of the SF derivatives is small. Also, the
ratio 〈(δv)2〉/〈(δu)2〉 decays only slowly in this range. For these reasons, and because
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increments for the two jets. The p.d.f.s correspond to r∗ = 60 and are multiplied by (δu)2 and (δv)2.
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Figure 5. Mixed third-order structure functions for the air jet (left-hand scale) and ratio
〈(δu)(δv)2〉/〈(δu)3〉 (right-hand scale). The horizontal line corresponds to the K41 value. —–,
〈(δu)(δv)2〉 with equation (4); �, 〈(δu)(δv)2〉; O, 〈(δu)3〉; e, 〈(δu)(δv)2〉/〈(δu)3〉.

of the corresponding approximately linear behaviour of 〈(δu)3〉, we shall continue to
refer to the IR.

Figure 3 also indicates that, at approximately the same Rλ, the data from the two
jets are in reasonable agreement with each other, especially over the IR. The effect of
noise in the LDA data (water jet) seems to be limited to r∗ < 50. Probability density
functions of the longitudinal and transverse velocity increments have been calculated
for the two jets at different values of r∗. They are shown in figure 4 for r∗ = 60,
i.e. approximately at the lower limit of the IR. The p.d.f.s have been multiplied by
(δu)2 or (δv)2 to emphasize the behaviour of the tails. The distributions indicate that
the number of samples used is adequate for achieving a closure of the integrands
associated with 〈(δα)p〉 (at least up to p = 6). The differences between the water and
air jets are smaller for the p.d.f.s of δv than the p.d.f.s of δu, because the LDA noise
becomes more pronounced as the particles travelling in the streamwise direction have
a smaller residence time.



Longitudinal and transverse structure functions in a round jet 239

An important and relatively sensitive test of isotropy is given by the following
relation (e.g. Monin & Yaglom 1975) between third-order structure functions

〈(δu)(δv)2〉 =
1

6

(
1 + r

∂

∂r

)
〈(δu)3〉. (4)

In the IR, the ratio 〈(δu)(δv)2〉/〈(δu)3〉 should be 1/3. For the air jet, (simultaneous
measurements of the two velocity components are not available in the water jet), this
ratio crosses K41 near the lower limit of the IR (figure 5). In figure 5, the mixed
structure function calculated from (4) is in reasonable agreement over the IR with the
measured distribution. Both distributions are smaller than 〈(δu)3〉 for all separations,
except perhaps at the smallest r∗, where they converge towards the same behaviour
as 〈(δu)3〉. Although isotropy is approached in the IR, it is strictly not satisfied even
at the lower limit of the range. The existence of large-scale anisotropy, which is
more pronounced for the water than the air jet, reinforces the previous observation.
The difference between LSF and TSF across the whole range of scales, reflects this
anisotropy.

5. Different methods for evaluating the IR exponents
The determination of the extent of the IR is important in order to assess whether

some of the disagreement, especially for ζT3 , between published data may have been
caused by the way this range is identified. The following approaches were used.

1. The IR is identified with the region where the third-order LSF increases linearly
with r∗, namely ζL3 ' 1. This is an exact result derived from the Navier–Stokes
equations for homogeneous isotropic turbulence at high Reynolds numbers. Scaling
exponents of other (p 6= 3) structure functions, including the transverse ones, are then
determined by fitting data over this range.

2. The IR for the LSFs is identified, as in method 1, with the range over which
the third-order LSF increases linearly with r∗. Scaling exponents of the other LSFs
are estimated by fitting to the data over this range. However, the IR for the TSFs is
identified with the range for which ζT3 ' 1. This approach lacks rigour.

Variations on the previous methods are provided by applying the extended self-
similarity (ESS) method (Benzi et al. 1993), i.e. by plotting the pth-order structure
function against the absolute third-order structure function and identifying the slope
in the range for which the latter is approximately constant. Using the first method and
allowing a variation of 2% on the third-order LSF divided by r∗, the IR is estimated
to be 60 6 r∗ 6 200 for the two jets. On the other hand, using the second method, the
IR for the TSF is shifted to smaller scales and is appreciably smaller (30 6 r∗ 6 70);
over this contracted range, the magnitudes of TSF scaling exponents are expected to
be close to those of the LSF exponents.

Another method of estimating the exponents, here identified as method 3, consists
of fitting the measured values of 〈(δu)p〉 or 〈(δv)p〉 with the relation (e.g. Stolovitzky,
Sreenivasan & Juneja 1993; Stolovitzky & Sreenivasan 1995; Grossmann 1995; Men-
eveau 1996; Antonia, Pearson & Zhou 2000)

〈(δα∗)p〉 =
aαpr

∗p

(1 + bαpr∗2)cαp
, (5)

where α ≡ u or v and aαp, bαp and cαp are (possibly flow and Reynolds number
dependent) constants and cαp ≡ 1

2
(p− ζαp ). The fit is applied over a range of r∗ which

extends from a minimum that could be resolved by measurement (ideally, r∗ ' 1) to
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Figure 6. Comparison of measured second- and fourth-order LSF and TSF with equation (5) for
the air jet. Symbols refer to the measured values; solid lines represent fits to the measurement, using
(5). �, LSF; e, TSF.

a maximum r∗max which corresponds to the outer part of the IR. This method avoids
some of the arbitrariness in methods 1 and 2 since, now, only the outer limit of the
IR needs to be specified. The quality of the fit (see figure 6) is such that the accuracy
of estimating ζp is comparable to that using ESS. The main rationale for equation
(5), as already pointed out by Stolovitzky et al. (1993), is that it asymptotes to the
correct behaviour when r approaches zero and when r extends into the scaling range.
Kurien & Sreenivasan (2000) considered an analytical extension of (5) which covers
the complete range of r from η to L. However, (5) is sufficient for the present purpose
of evaluating IR exponents. It was applied only to the air jet data since the DR for
the water jet data was noise contaminated. In figure 6, the value of r∗max is taken to be
the same as that used in method 1 (a discussion of the effect of the choice of r∗max on
aα, bα and cα is given in Antonia et al. 2000). The resulting values of ζL2 and ζT2 are
0.67 and 0.61, whereas ζL4 and ζT4 are 1.22 and 1.05; the magnitudes of ζL2 and ζT4 are
in good agreement with the local values (r∗ = 120 or log r∗ ' 2) indicated in figure 3;
an increase in r∗max when applying (5) would result in a decrease in the magnitudes of
ζLα and ζTα in a similar manner to figure 3. We note here that the ‘constant’ exponents
provided by ESS should, because of the ‘relative’ nature of ESS, be interpreted only
as ‘averages’ over the IR.

6. An empirical description of pth-order structure functions
In § 4, a major portion of the observed differences between LSF and TSF was

ascribed to the large-scale anisotropy. The ratio u′/v′, which is different in each
flow, is an indicator of the energy supplied to the large-scales, since 〈(δu)2〉 and
〈(δv)2〉 approach 2u′2 and 2v′2 when r∗ → ∞. A simplistic description of the structure
functions is provided by the model proposed below. The model allows estimates of
the scaling exponents which take into account the anisotropy of the large scales.

A necessary requirement for a model, as sketched in figure 7, is that it should
correctly reproduce the asymptotic behaviour of pth-order structure functions (e.g.
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Figure 7. Model of the pth-order structure function used to evaluate the scaling range exponents.

Frisch 1995), namely,

〈(δα∗)p〉 → Aα(p)r
∗p, when r∗ → 0,

〈(δα∗)p〉 → 2Bα(p)α
′∗p when r∗ → ∞,

}
(6)

where α ≡ u or v and the prefactors Aα(p) and Bα(p) depend on the Reynolds number.
It is necessary to specify the limiting values for r∗. At the lower end, r∗ ∼ 1, whereas
r∗ is proportional to L∗α at the higher end. We adopt Sreenivasan’s (1995) suggestion
and introduce effective lengthscales (which are multiples of η and Lα), namely, η∗αeff

(= ηαeff
/η) and L∗αeff

(= Lαeff
/η). The scaling exponents of the pth-order structure func-

tion can then be approximated by

ζαp =
log [2Bα(p)α

′∗p]− log [Aα(p)η
∗p
αeff

]

log (L∗αeff
)− log (η∗αeff

)
=

logCα(p)

logDα
, (7)

where Cα(p) = (2Bα(p)α
′∗p)/(Aα(p)η∗pαeff

) and Dα = Lαeff
/ηαeff

. It is of interest to evalu-
ate the relative difference between longitudinal (α = u) and transverse (α = v)
exponents

ζLp − ζTp
ζLp

=
logCu(p)/ logDu − logCv(p)/ logDv

logCu(p)/ logDu

=
log [Cu(p)/Cv(p)]

logCu(p)
− log [Du/Dv]

logDv
+

log [Cu(p)/Cv(p)] log [Du/Dv]

logCu(p) logDv
. (8)

The evaluations of (7) and (8) require a knowledge of Aα(p) and Bα(p). Assuming
isotropy, for p = 2 (Frisch 1995)

Au(2) = 1
15
, Av(2) = 2Au(2), Bα(2) = 1 (9)

and Cu(2)/Cv(2) = 2(u′/v′)2. Equation (8) thus explicitly contains information about
the ratio u′/v′, which is one measure of the large-scale anisotropy. As the degree of
anisotropy increases, the magnitudes of the first and third terms on the right-hand
side of equation (8) also increase. Further, for isotropic turbulence, Cα(2) ∼ Rλ and

Dα ∼ R3/2
λ . The magnitude of all terms in (8) decreases as Rλ increases. For very large
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p = 2 p = 4

ζLp (air) 0.71 (0.67) 1.30 (1.22)
ζTp (air) 0.64 (0.61) 1.10 (1.05)
ζTp (air) (equation (1)) 0.68 —a

ζLp (water) 0.71 1.26
ζTp (water) 0.58 0.99
ζTp (water) (equation (1)) 0.70 —a

Error in ζL,Tp (air) ±0.005 ±0.011
Error in ζL,Tp (water) ±0.02 ±0.035

aAt present, there is no rigorous relation, comparable to (1), between fourth-order LSF and TSF.
The empirical relation proposed by Antonia et al. (1997a) yields values of 1.28 for ζT4 (air) and 1.22
for ζT4 (water). These are in good agreement with the tabulated values for ζL4 (air) and ζL4 (water).

Table 2. Second and fourth-order LSF and TSF scaling exponents obtained with methods 1 and 3
(within parentheses). Equation (1) has also been used to evaluate TSF exponents for p = 2.

Rλ, logDu = logDv and only the first term on the right-hand side of (8) remains.
Estimates of (ζLp −ζTp )/ζLp from (8) can be compared with experimental results obtained
for different large-scale anisotropies and different Reynolds numbers.

For p = 4,

Aα(4) =
F∂α/∂x

152
, Bα(4) = Fα + 3, (10)

where Fα ≡ 〈α4〉/〈α2〉2 is the flatness factor of α. It follows that

Cu(4)

Cv(4)
=

(
u′

v′

)4(
Fu + 3

Fv + 3

)(
F∂v/∂x

F∂u/∂x

)
,

which depends explicitly on the ratio u′/v′. For p > 4, it is possible to derive
expressions for Aα(p) and Bα(p), but the constants and factors are more elaborate and
difficult to determine.

The values of ηαeff
(' 10η) and Lαeff

(' Lα), have been chosen, after carefully
inspecting the behaviour of several low-order structure functions. These choices (see
figure 7) correspond to the upper limit of the dissipative range and the beginning of
the large-scale plateau, respectively. However, the results from the model are not very
sensitive to slight variations in these quantities.

7. Longitudinal and transverse scaling exponents: Reynolds number
dependence

Estimates for second- and fourth-order scaling exponents are summarized in
Table 2. There are differences between longitudinal and transverse exponents (about
15% for p = 2 and 20% for p = 4). However, when TSF exponents are determined
using (1), the difference is strongly reduced (to about 5%). Note that (1) is valid for
locally homogeneous and isotropic turbulence and that any intermittency in the LSF
is transferred to the TSF. The present results therefore indicate that a large portion
of the observed difference between LSF and TSF scaling exponents is caused by a
local anisotropy in the IR. The exponents for the air jet determined using method 3,
i.e. equation (5), are also very close to those evaluated using method 1 (see table 2).
Estimates of uncertainties in ζLp and ζTp are included in table 2. They were obtained



Longitudinal and transverse structure functions in a round jet 243

p

ζp

(a)

(b)

0 2 4 6 8 10

2.5

2.0

1.5

1.0

0.5

K41 LognormalLognormalLognormal

ζp

0 2 4 6 8 10

2.5

2.0

1.5

1.0

0.5

K41 LognormalLognormalLognormal

Figure 8. (a) LSF and TSF scaling exponents for the two jets. - - -, upper and lower error bounds
for the water jet (for the air jet, the errors are within the symbol size). �, water jet [filled in symbols,
TSF 1; open symbols, LSF 1; +, TSF 2]; e, air jet [filled in symbols, TSF 1; open symbols, LSF 1;
⊕, TSF 2], where 1 and 2 indicate the method used to determine the scaling range. (b) LSF and TSF
scaling exponents for the water jet at different Reynolds numbers (only data using method 1 are
shown). 5, LSF for Rλ = 280; 4, TSF for Rλ = 280; ×, LSF for Rλ = 440; ∗, TSF for Rλ = 440;
�, LSF for Rλ = 500; +, TSF for Rλ = 500; e, LSF for Rλ = 1000; •, TSF for Rλ = 1000.

after first estimating the errors in 〈(δα)p〉 (p = 2, 4) at the lower and upper limits
of the IR. Although there are several sources for these errors and several possible
ways of evaluating the errors (e.g. Antonia et al. 1982; Anselmet et al. 1984), we
have used here a slight variant of the method described by Camussi et al. (1996).
Specifically, the major error εp in 〈(δα)p〉 is assumed to be given by the expression

[{〈(δα)2p〉/〈(δαp〉2} − 1]1/2/N
1/2
ind where Nind = 〈U〉TS/2Lδα. The integral lengthscale

Lδα associated with δα was inferred via the Taylor hypothesis from the integral of
the time autocorrelation function of δα up to its first zero crossing. The measured
magnitudes of the flatness and superflatness factors of δα were used for p = 2 and 4,
respectively.

Table 2 indicates that the exponents are generally smaller (when method 1 is used)
for the water jet than for the air jet. The relative difference between longitudinal
exponents is about 3% (p = 4), compared to about 10% for the transverse exponents
(p = 2 and p = 4). The ratio (ζLp − ζTp )/ζLp is larger for the water than the air
jet, confirming the effect the large-scale anisotropy has on the IR. This is further
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Figure 9. (a) Relative difference between longitudinal and transverse scaling exponents for the two
jets. Estimates from the empirical model for p = 2 and p = 4 are also shown (thin continuous
line for the water jet and thick line for the air jet). - - -, upper and lower error bounds for the
water jet (the vertical lines give an indication of the error for the air jet). Water jet [full symbols, 1;
�, 2]; air jet [full symbols, 1; ⊕, 2], where 1 and 2 indicate the method used to determine the scaling
range. (b) Relative difference between longitudinal and transverse scaling exponents for the water
jet as a function of the Reynolds numbers (only data using method 1 are shown). 4, Rλ = 280 (1);
∗, Rλ = 440 (1); �, Rλ = 500 (1); •, Rλ = 1000 (1).

confirmed by the relative differences calculated from the model of § 6. For the air jet,
the ratios are 0.14 and 0.16 for p = 2 and 4, respectively (the measured values are
0.10 and 0.15), whereas, for the water jet, they are 0.19 and 0.27 (the measured values
are 0.18 and 0.21). This level of agreement underlines the role of u′/v′ as a large-scale
‘forcing’ term.

The difference between the longitudinal and transverse exponents in the two jets
can be ascribed to the different global anisotropies in the two flows. This, in turn,
reflects differences in initial conditions, although the precise connection between
the value of u′/v′ at the measurement station and the initial conditions is not
understood. Transverse exponents appear to be more affected by the anisotropy
than the longitudinal exponents. Exponents were calculated for both flows up to
p = 8, using methods 1 and 2. To within the uncertainty envelopes indicated in
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Figure 10. Relative differences between longitudinal and transverse second- and fourth-order scaling
exponents as a function of the Reynolds number for the two jets. The vertical lines are an estimate
of the errors. Open and closed symbols refer to p = 2 and p = 4, respectively. Estimates from the
empirical model for p = 2 are also shown (thin continuous line for the water jet and thick line for
the air jet). �, water jet; e, air jet.

figure 8(a), there is fairly good agreement between the longitudinal exponents in the
two flows. Also, their magnitudes are in reasonable agreement with values reported
in the literature, based either on measurement (e.g. Anselmet et al. 1984) or DNS
data (e.g. Vincent & Meneguzzi 1991; Cao, Chen & Sreenivasan 1996). On the other
hand, a difference is observed between the transverse scaling exponents, this difference
exhibiting a significant dependence on Rλ (figure 8b), where only results for the water
jet are shown (at four values of Rλ: 280, 440, 500 and 1000).

The dependence on the order p and on Rλ of (ζLp − ζTp )/ζLp is shown explicitly in
figures 9 and 10. A nearly linear variation with respect to p (the slope is about 3%)
is observed in figure 9(a). Note that these results would virtually collapse if method 2
were used so that the relative difference between longitudinal and transverse exponents
would reduce to almost 5% for p 6 4 (and less than 10% up to p = 8). The results
from the model presented in § 6 for p = 2 and p = 4 are also included. As already
noted, the agreement is reasonable in each jet. The trend in figure 9(b) supports a
reduction in the relative difference as Rλ increases. However, as already noted, even
at the highest Rλ, the difference is in the range 10%–20%.

Included in figure 10 are results obtained in the same air jet at Rλ = 235, 305
and 365 but in a separate investigation. The number of independent samples was
smaller than for the present study by a factor of about 15; consequently, the error
bars for these three data sets are significantly larger. Notwithstanding the increased
uncertainty, the trend in figure 10 is unmistakable. Both the air and water jet data
indicate a definite decrease in the ratio (ζLp − ζTp )/ζLp as Rλ increases. In each flow, the
decrease is reasonably well represented by the model. The different magnitudes of the
ratio in the two flows reflect mainly the different levels of large-scale anisotropy. In
each flow, the ratio u′/v′ is essentially independent of Rλ (for example, in the water jet,
the overall variation is in the range 1.30–1.33) so that the difference in u′/v′ between
the two flows persists as Rλ increases. It is conceivable that as Rλ → ∞, the effect
of the anisotropy may be negligible; nonetheless, the results indicate that the effect
cannot be ignored for Reynolds numbers at which investigations are carried out.
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It is worth discussing the trends indicated by figure 10 in a more general context
in view of the variation in published values of (ζLp − ζTp ), at nominally the same Rλ,
obtained in different flows. Zhou & Antonia (2000) compared their measurements
of (ζLp − ζTp ) in low Rλ decaying grid turbulence with DNS results in periodic box
turbulence, obtained either at comparable or slightly larger values of Rλ. They noted
that, for a fixed value of p, the measured values of (ζLp − ζTp ) were substantially
larger than in the simulations of Boratav & Pelz (1997), who used an unforced flow
but with high-symmetry initial conditions, and Grossmann, Lohse & Reeh (1997)
who considered forced stationary turbulence. The level of anisotropy, as measured by
u′/v′, was much smaller in the simulations than in the experiment. Simulations (Kerr,
Meneguzzi & Gotoh 2000) for a 10243 mesh, with Gaussian white-noise forcing at
the lowest band of wavenumbers so as to maintain constant energy, indicated a value
of (ζL4 − ζT4 ) of about 0.05 at Rλ = 390. This difference is clearly negligible compared
with the present measurements, apparently reflecting the high level of global isotropy
in the simulation. Kerr et al. also report results from experiments in a return channel
and a mixing layer, each obtained at high values of Rλ (3200 and 2100, respectively).
The difference (ζL4 − ζT4 ) was negligible in both flows although the mixing layer is
described as very anisotropic and the channel flow as completely isotropic. It would
seem that the effect of increasing Rλ may eventually become more dominant than
that associated with any large-scale anisotropy. However, this remark is speculative
in view of the documented effect of the mean shear at values of Rλ of the order 104 in
the atmospheric surface layer (e.g. Sreenivasan & Dhruva 1998; Antonia & Pearson
1999). There is clearly a need for devising experiments and simulations, preferably in
the same type of flow but with a means of controlling the global anisotropy.

8. Conclusions
The differences between scaling exponents of longitudinal and transverse velocity

structure functions have been investigated experimentally using two round jets, each
with slightly different initial conditions. Theoretical arguments, in particular K41,
require the longitudinal and transverse exponents to be equal (at least for p = 2),
whereas the measurements suggest differences between these exponents as high as
15% for p = 2, 20% for p = 4 and 40% for p = 8. These large differences appear to
reflect mainly the global anisotropy in the two flows. When the anisotropy is taken
into account, for example by enforcing the kinematic constraint of equation (1), the
difference between exponents (p = 2) is reduced to less than 5%.

The measurements also indicate that the difference between longitudinal and
transverse exponents decreases as the Reynolds number increases. The large-scale
anisotropy, as represented for example, by the ratio u′/v′, seems to be responsible,
to a large extent, for the difference between longitudinal and transverse exponents.
There is a reduction of about 10% in the relative difference between exponents
when u′/v′ decreases from 1.32 (water jet) to 1.18 (air jet). The previously reported
Reynolds-number dependence of longitudinal, and more especially, transverse expo-
nents is confirmed by the present measurements. Whereas the difference between the
longitudinal and transverse exponents is not negligible at the maximum Rλ (' 1000)
achieved, it is nearly half that at Rλ ' 350.

An empirical model for describing the behaviour of the structure functions has been
proposed. The description allows for differences in the magnitudes and lengthscales
of longitudinal and transverse velocity fluctuations. It also accounts for the influence
of both small and large scales on the behaviour of structure functions in the inertial
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range. Results from this model are consistent with the measured relative differences
between longitudinal and transverse exponents as well as the Rλ dependence of these
exponents.
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